# Libraries for this assignment
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(purrr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(palmerpenguins) # Load library palmerpenguins
penguins %>% # penguins dataset
head() %>% # head of penguins dataset
kbl() %>%
kable_styling() # Using KableExtra table formatting
species | island | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g | sex | year |
---|---|---|---|---|---|---|---|
Adelie | Torgersen | 39.1 | 18.7 | 181 | 3750 | male | 2007 |
Adelie | Torgersen | 39.5 | 17.4 | 186 | 3800 | female | 2007 |
Adelie | Torgersen | 40.3 | 18.0 | 195 | 3250 | female | 2007 |
Adelie | Torgersen | NA | NA | NA | NA | NA | 2007 |
Adelie | Torgersen | 36.7 | 19.3 | 193 | 3450 | female | 2007 |
Adelie | Torgersen | 39.3 | 20.6 | 190 | 3650 | male | 2007 |
penguins %>%
summary() # Summary of penguins dataset
## species island bill_length_mm bill_depth_mm
## Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
## Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
## Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30
## Mean :43.92 Mean :17.15
## 3rd Qu.:48.50 3rd Qu.:18.70
## Max. :59.60 Max. :21.50
## NA's :2 NA's :2
## flipper_length_mm body_mass_g sex year
## Min. :172.0 Min. :2700 female:165 Min. :2007
## 1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
## Median :197.0 Median :4050 NA's : 11 Median :2008
## Mean :200.9 Mean :4202 Mean :2008
## 3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
## Max. :231.0 Max. :6300 Max. :2009
## NA's :2 NA's :2
What the summary shows;
It shows the descriptive statistics of the dataset. This includes the min, max, mean, median, and quartiles of each column.
It shows the names of each column in the dataset
It also identifies columns with missing values(NA)
penguins %>%
str() # structure of penguins dataset
## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
What the structure explains;
It shows the dimensions of the dataset = 344 x 8
It shows the class of each column. For example; ‘species’, ‘island’ and ‘sex’ are factors.
penguins %>% # load penguins data
select(bill_depth_mm) %>% # select the bill depth column using the select() from dplyr.
quantile(na.rm = TRUE) # calculate the quantiles using the quantile()
## 0% 25% 50% 75% 100%
## 13.1 15.6 17.3 18.7 21.5
The quantiles divide the distribution of bill_depth_mm into equal groups. 50% shows the median while 75% and 100% shows the median of the lower and upper half of the data.
c(1,4,7,NA,9) %>% # create a vector
mean(na.rm = TRUE) # calculate the mean using the mean() and setting na.rm = TRUE to remove missing values
## [1] 5.25
penguins %>% # load penguin data
summarise(
mean_body_mass = mean(body_mass_g, na.rm = TRUE),# Calculate the mean, sd and median of the body mass and summarize results into a data frame
sd_body_mass = sd(body_mass_g, na.rm = TRUE),
med_body_mass = median(body_mass_g, na.rm = TRUE)) %>%
kbl() %>%
kable_styling() # Using KableExtra table formatting
mean_body_mass | sd_body_mass | med_body_mass |
---|---|---|
4201.754 | 801.9545 | 4050 |
penguins %>%
group_by(species) %>% #group all species in the data using group_by function
summarise(
mean_body_mass = mean(body_mass_g, na.rm = TRUE), # repeat 2b above
sd_body_mass = sd(body_mass_g, na.rm = TRUE),
med_body_mass = median(body_mass_g, na.rm = TRUE)) %>%
kbl() %>%
kable_styling() # Using KableExtra table formatting
## `summarise()` ungrouping output (override with `.groups` argument)
species | mean_body_mass | sd_body_mass | med_body_mass |
---|---|---|---|
Adelie | 3700.662 | 458.5661 | 3700 |
Chinstrap | 3733.088 | 384.3351 | 3700 |
Gentoo | 5076.016 | 504.1162 | 5000 |
penguins %>%
filter(island == "Biscoe") %>% # filtered out Biscoe island using the filter()
group_by(species, island) %>% # Grouped species and island from dataset
summarise(
mean_body_mass = mean(body_mass_g, na.rm = TRUE), # same as 2c above
sd_body_mass = sd(body_mass_g, na.rm = TRUE),
med_body_mass = median(body_mass_g, na.rm = TRUE)) %>%
kbl() %>%
kable_styling() # Using KableExtra table formatting
## `summarise()` regrouping output by 'species' (override with `.groups` argument)
species | island | mean_body_mass | sd_body_mass | med_body_mass |
---|---|---|---|---|
Adelie | Biscoe | 3709.659 | 487.7337 | 3750 |
Gentoo | Biscoe | 5076.016 | 504.1162 | 5000 |
The ‘Chinstrap’ specie is not included in the summarized dataframe. It can be inferred that the Chinstrap species is not found in Biscoe island.
penguins %>% # pipe penguin data
group_by(species, island) %>% # group the species and island column together
mutate('species-island' = paste(as.character(species), as.character(island), sep = "_")) %>% # create a new dataframe with 'species' island column using mutate() and paste(sep = "_")
kbl() %>%
kable_styling() # Using KableExtra table formatting
species | island | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g | sex | year | species-island |
---|---|---|---|---|---|---|---|---|
Adelie | Torgersen | 39.1 | 18.7 | 181 | 3750 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 39.5 | 17.4 | 186 | 3800 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 40.3 | 18.0 | 195 | 3250 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | NA | NA | NA | NA | NA | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 36.7 | 19.3 | 193 | 3450 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 39.3 | 20.6 | 190 | 3650 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 38.9 | 17.8 | 181 | 3625 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 39.2 | 19.6 | 195 | 4675 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 34.1 | 18.1 | 193 | 3475 | NA | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 42.0 | 20.2 | 190 | 4250 | NA | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 37.8 | 17.1 | 186 | 3300 | NA | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 37.8 | 17.3 | 180 | 3700 | NA | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 41.1 | 17.6 | 182 | 3200 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 38.6 | 21.2 | 191 | 3800 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 34.6 | 21.1 | 198 | 4400 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 36.6 | 17.8 | 185 | 3700 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 38.7 | 19.0 | 195 | 3450 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 42.5 | 20.7 | 197 | 4500 | male | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 34.4 | 18.4 | 184 | 3325 | female | 2007 | Adelie_Torgersen |
Adelie | Torgersen | 46.0 | 21.5 | 194 | 4200 | male | 2007 | Adelie_Torgersen |
Adelie | Biscoe | 37.8 | 18.3 | 174 | 3400 | female | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 37.7 | 18.7 | 180 | 3600 | male | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 35.9 | 19.2 | 189 | 3800 | female | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 38.2 | 18.1 | 185 | 3950 | male | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 38.8 | 17.2 | 180 | 3800 | male | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 35.3 | 18.9 | 187 | 3800 | female | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 40.6 | 18.6 | 183 | 3550 | male | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 40.5 | 17.9 | 187 | 3200 | female | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 37.9 | 18.6 | 172 | 3150 | female | 2007 | Adelie_Biscoe |
Adelie | Biscoe | 40.5 | 18.9 | 180 | 3950 | male | 2007 | Adelie_Biscoe |
Adelie | Dream | 39.5 | 16.7 | 178 | 3250 | female | 2007 | Adelie_Dream |
Adelie | Dream | 37.2 | 18.1 | 178 | 3900 | male | 2007 | Adelie_Dream |
Adelie | Dream | 39.5 | 17.8 | 188 | 3300 | female | 2007 | Adelie_Dream |
Adelie | Dream | 40.9 | 18.9 | 184 | 3900 | male | 2007 | Adelie_Dream |
Adelie | Dream | 36.4 | 17.0 | 195 | 3325 | female | 2007 | Adelie_Dream |
Adelie | Dream | 39.2 | 21.1 | 196 | 4150 | male | 2007 | Adelie_Dream |
Adelie | Dream | 38.8 | 20.0 | 190 | 3950 | male | 2007 | Adelie_Dream |
Adelie | Dream | 42.2 | 18.5 | 180 | 3550 | female | 2007 | Adelie_Dream |
Adelie | Dream | 37.6 | 19.3 | 181 | 3300 | female | 2007 | Adelie_Dream |
Adelie | Dream | 39.8 | 19.1 | 184 | 4650 | male | 2007 | Adelie_Dream |
Adelie | Dream | 36.5 | 18.0 | 182 | 3150 | female | 2007 | Adelie_Dream |
Adelie | Dream | 40.8 | 18.4 | 195 | 3900 | male | 2007 | Adelie_Dream |
Adelie | Dream | 36.0 | 18.5 | 186 | 3100 | female | 2007 | Adelie_Dream |
Adelie | Dream | 44.1 | 19.7 | 196 | 4400 | male | 2007 | Adelie_Dream |
Adelie | Dream | 37.0 | 16.9 | 185 | 3000 | female | 2007 | Adelie_Dream |
Adelie | Dream | 39.6 | 18.8 | 190 | 4600 | male | 2007 | Adelie_Dream |
Adelie | Dream | 41.1 | 19.0 | 182 | 3425 | male | 2007 | Adelie_Dream |
Adelie | Dream | 37.5 | 18.9 | 179 | 2975 | NA | 2007 | Adelie_Dream |
Adelie | Dream | 36.0 | 17.9 | 190 | 3450 | female | 2007 | Adelie_Dream |
Adelie | Dream | 42.3 | 21.2 | 191 | 4150 | male | 2007 | Adelie_Dream |
Adelie | Biscoe | 39.6 | 17.7 | 186 | 3500 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 40.1 | 18.9 | 188 | 4300 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 35.0 | 17.9 | 190 | 3450 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 42.0 | 19.5 | 200 | 4050 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 34.5 | 18.1 | 187 | 2900 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 41.4 | 18.6 | 191 | 3700 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 39.0 | 17.5 | 186 | 3550 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 40.6 | 18.8 | 193 | 3800 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 36.5 | 16.6 | 181 | 2850 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 37.6 | 19.1 | 194 | 3750 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 35.7 | 16.9 | 185 | 3150 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 41.3 | 21.1 | 195 | 4400 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 37.6 | 17.0 | 185 | 3600 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 41.1 | 18.2 | 192 | 4050 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 36.4 | 17.1 | 184 | 2850 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 41.6 | 18.0 | 192 | 3950 | male | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 35.5 | 16.2 | 195 | 3350 | female | 2008 | Adelie_Biscoe |
Adelie | Biscoe | 41.1 | 19.1 | 188 | 4100 | male | 2008 | Adelie_Biscoe |
Adelie | Torgersen | 35.9 | 16.6 | 190 | 3050 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 41.8 | 19.4 | 198 | 4450 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 33.5 | 19.0 | 190 | 3600 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 39.7 | 18.4 | 190 | 3900 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 39.6 | 17.2 | 196 | 3550 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 45.8 | 18.9 | 197 | 4150 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 35.5 | 17.5 | 190 | 3700 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 42.8 | 18.5 | 195 | 4250 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 40.9 | 16.8 | 191 | 3700 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 37.2 | 19.4 | 184 | 3900 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 36.2 | 16.1 | 187 | 3550 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 42.1 | 19.1 | 195 | 4000 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 34.6 | 17.2 | 189 | 3200 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 42.9 | 17.6 | 196 | 4700 | male | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 36.7 | 18.8 | 187 | 3800 | female | 2008 | Adelie_Torgersen |
Adelie | Torgersen | 35.1 | 19.4 | 193 | 4200 | male | 2008 | Adelie_Torgersen |
Adelie | Dream | 37.3 | 17.8 | 191 | 3350 | female | 2008 | Adelie_Dream |
Adelie | Dream | 41.3 | 20.3 | 194 | 3550 | male | 2008 | Adelie_Dream |
Adelie | Dream | 36.3 | 19.5 | 190 | 3800 | male | 2008 | Adelie_Dream |
Adelie | Dream | 36.9 | 18.6 | 189 | 3500 | female | 2008 | Adelie_Dream |
Adelie | Dream | 38.3 | 19.2 | 189 | 3950 | male | 2008 | Adelie_Dream |
Adelie | Dream | 38.9 | 18.8 | 190 | 3600 | female | 2008 | Adelie_Dream |
Adelie | Dream | 35.7 | 18.0 | 202 | 3550 | female | 2008 | Adelie_Dream |
Adelie | Dream | 41.1 | 18.1 | 205 | 4300 | male | 2008 | Adelie_Dream |
Adelie | Dream | 34.0 | 17.1 | 185 | 3400 | female | 2008 | Adelie_Dream |
Adelie | Dream | 39.6 | 18.1 | 186 | 4450 | male | 2008 | Adelie_Dream |
Adelie | Dream | 36.2 | 17.3 | 187 | 3300 | female | 2008 | Adelie_Dream |
Adelie | Dream | 40.8 | 18.9 | 208 | 4300 | male | 2008 | Adelie_Dream |
Adelie | Dream | 38.1 | 18.6 | 190 | 3700 | female | 2008 | Adelie_Dream |
Adelie | Dream | 40.3 | 18.5 | 196 | 4350 | male | 2008 | Adelie_Dream |
Adelie | Dream | 33.1 | 16.1 | 178 | 2900 | female | 2008 | Adelie_Dream |
Adelie | Dream | 43.2 | 18.5 | 192 | 4100 | male | 2008 | Adelie_Dream |
Adelie | Biscoe | 35.0 | 17.9 | 192 | 3725 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 41.0 | 20.0 | 203 | 4725 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 37.7 | 16.0 | 183 | 3075 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 37.8 | 20.0 | 190 | 4250 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 37.9 | 18.6 | 193 | 2925 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 39.7 | 18.9 | 184 | 3550 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 38.6 | 17.2 | 199 | 3750 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 38.2 | 20.0 | 190 | 3900 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 38.1 | 17.0 | 181 | 3175 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 43.2 | 19.0 | 197 | 4775 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 38.1 | 16.5 | 198 | 3825 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 45.6 | 20.3 | 191 | 4600 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 39.7 | 17.7 | 193 | 3200 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 42.2 | 19.5 | 197 | 4275 | male | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 39.6 | 20.7 | 191 | 3900 | female | 2009 | Adelie_Biscoe |
Adelie | Biscoe | 42.7 | 18.3 | 196 | 4075 | male | 2009 | Adelie_Biscoe |
Adelie | Torgersen | 38.6 | 17.0 | 188 | 2900 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 37.3 | 20.5 | 199 | 3775 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 35.7 | 17.0 | 189 | 3350 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 41.1 | 18.6 | 189 | 3325 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 36.2 | 17.2 | 187 | 3150 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 37.7 | 19.8 | 198 | 3500 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 40.2 | 17.0 | 176 | 3450 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 41.4 | 18.5 | 202 | 3875 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 35.2 | 15.9 | 186 | 3050 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 40.6 | 19.0 | 199 | 4000 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 38.8 | 17.6 | 191 | 3275 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 41.5 | 18.3 | 195 | 4300 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 39.0 | 17.1 | 191 | 3050 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 44.1 | 18.0 | 210 | 4000 | male | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 38.5 | 17.9 | 190 | 3325 | female | 2009 | Adelie_Torgersen |
Adelie | Torgersen | 43.1 | 19.2 | 197 | 3500 | male | 2009 | Adelie_Torgersen |
Adelie | Dream | 36.8 | 18.5 | 193 | 3500 | female | 2009 | Adelie_Dream |
Adelie | Dream | 37.5 | 18.5 | 199 | 4475 | male | 2009 | Adelie_Dream |
Adelie | Dream | 38.1 | 17.6 | 187 | 3425 | female | 2009 | Adelie_Dream |
Adelie | Dream | 41.1 | 17.5 | 190 | 3900 | male | 2009 | Adelie_Dream |
Adelie | Dream | 35.6 | 17.5 | 191 | 3175 | female | 2009 | Adelie_Dream |
Adelie | Dream | 40.2 | 20.1 | 200 | 3975 | male | 2009 | Adelie_Dream |
Adelie | Dream | 37.0 | 16.5 | 185 | 3400 | female | 2009 | Adelie_Dream |
Adelie | Dream | 39.7 | 17.9 | 193 | 4250 | male | 2009 | Adelie_Dream |
Adelie | Dream | 40.2 | 17.1 | 193 | 3400 | female | 2009 | Adelie_Dream |
Adelie | Dream | 40.6 | 17.2 | 187 | 3475 | male | 2009 | Adelie_Dream |
Adelie | Dream | 32.1 | 15.5 | 188 | 3050 | female | 2009 | Adelie_Dream |
Adelie | Dream | 40.7 | 17.0 | 190 | 3725 | male | 2009 | Adelie_Dream |
Adelie | Dream | 37.3 | 16.8 | 192 | 3000 | female | 2009 | Adelie_Dream |
Adelie | Dream | 39.0 | 18.7 | 185 | 3650 | male | 2009 | Adelie_Dream |
Adelie | Dream | 39.2 | 18.6 | 190 | 4250 | male | 2009 | Adelie_Dream |
Adelie | Dream | 36.6 | 18.4 | 184 | 3475 | female | 2009 | Adelie_Dream |
Adelie | Dream | 36.0 | 17.8 | 195 | 3450 | female | 2009 | Adelie_Dream |
Adelie | Dream | 37.8 | 18.1 | 193 | 3750 | male | 2009 | Adelie_Dream |
Adelie | Dream | 36.0 | 17.1 | 187 | 3700 | female | 2009 | Adelie_Dream |
Adelie | Dream | 41.5 | 18.5 | 201 | 4000 | male | 2009 | Adelie_Dream |
Gentoo | Biscoe | 46.1 | 13.2 | 211 | 4500 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.0 | 16.3 | 230 | 5700 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.7 | 14.1 | 210 | 4450 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.0 | 15.2 | 218 | 5700 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.6 | 14.5 | 215 | 5400 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.5 | 13.5 | 210 | 4550 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.4 | 14.6 | 211 | 4800 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.7 | 15.3 | 219 | 5200 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.3 | 13.4 | 209 | 4400 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.8 | 15.4 | 215 | 5150 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 40.9 | 13.7 | 214 | 4650 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.0 | 16.1 | 216 | 5550 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.5 | 13.7 | 214 | 4650 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.4 | 14.6 | 213 | 5850 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.8 | 14.6 | 210 | 4200 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.3 | 15.7 | 217 | 5850 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 42.0 | 13.5 | 210 | 4150 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.2 | 15.2 | 221 | 6300 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.2 | 14.5 | 209 | 4800 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.7 | 15.1 | 222 | 5350 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.2 | 14.3 | 218 | 5700 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.1 | 14.5 | 215 | 5000 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.5 | 14.5 | 213 | 4400 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.3 | 15.8 | 215 | 5050 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 42.9 | 13.1 | 215 | 5000 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.1 | 15.1 | 215 | 5100 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.5 | 14.3 | 216 | 4100 | NA | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.8 | 15.0 | 215 | 5650 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.2 | 14.3 | 210 | 4600 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.0 | 15.3 | 220 | 5550 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.3 | 15.3 | 222 | 5250 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 42.8 | 14.2 | 209 | 4700 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.1 | 14.5 | 207 | 5050 | female | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 59.6 | 17.0 | 230 | 6050 | male | 2007 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.1 | 14.8 | 220 | 5150 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.4 | 16.3 | 220 | 5400 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 42.6 | 13.7 | 213 | 4950 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.4 | 17.3 | 219 | 5250 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.0 | 13.6 | 208 | 4350 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.7 | 15.7 | 208 | 5350 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 42.7 | 13.7 | 208 | 3950 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.6 | 16.0 | 225 | 5700 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.3 | 13.7 | 210 | 4300 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.6 | 15.0 | 216 | 4750 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.5 | 15.9 | 222 | 5550 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.6 | 13.9 | 217 | 4900 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.5 | 13.9 | 210 | 4200 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.5 | 15.9 | 225 | 5400 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.9 | 13.3 | 213 | 5100 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.2 | 15.8 | 215 | 5300 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.6 | 14.2 | 210 | 4850 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.5 | 14.1 | 220 | 5300 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.1 | 14.4 | 210 | 4400 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.1 | 15.0 | 225 | 5000 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.5 | 14.4 | 217 | 4900 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.0 | 15.4 | 220 | 5050 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.8 | 13.9 | 208 | 4300 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.5 | 15.0 | 220 | 5000 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.2 | 14.5 | 208 | 4450 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.4 | 15.3 | 224 | 5550 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.3 | 13.8 | 208 | 4200 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.2 | 14.9 | 221 | 5300 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.7 | 13.9 | 214 | 4400 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 54.3 | 15.7 | 231 | 5650 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.8 | 14.2 | 219 | 4700 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.8 | 16.8 | 230 | 5700 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.2 | 14.4 | 214 | 4650 | NA | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.5 | 16.2 | 229 | 5800 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.5 | 14.2 | 220 | 4700 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.7 | 15.0 | 223 | 5550 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.7 | 15.0 | 216 | 4750 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.4 | 15.6 | 221 | 5000 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.2 | 15.6 | 221 | 5100 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.5 | 14.8 | 217 | 5200 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.4 | 15.0 | 216 | 4700 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.6 | 16.0 | 230 | 5800 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.5 | 14.2 | 209 | 4600 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 51.1 | 16.3 | 220 | 6000 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.2 | 13.8 | 215 | 4750 | female | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.2 | 16.4 | 223 | 5950 | male | 2008 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.1 | 14.5 | 212 | 4625 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 52.5 | 15.6 | 221 | 5450 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.4 | 14.6 | 212 | 4725 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.0 | 15.9 | 224 | 5350 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.9 | 13.8 | 212 | 4750 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.8 | 17.3 | 228 | 5600 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.4 | 14.4 | 218 | 4600 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 51.3 | 14.2 | 218 | 5300 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.5 | 14.0 | 212 | 4875 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 52.1 | 17.0 | 230 | 5550 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.5 | 15.0 | 218 | 4950 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 52.2 | 17.1 | 228 | 5400 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.5 | 14.5 | 212 | 4750 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.5 | 16.1 | 224 | 5650 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.5 | 14.7 | 214 | 4850 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.8 | 15.7 | 226 | 5200 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.4 | 15.8 | 216 | 4925 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.9 | 14.6 | 222 | 4875 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.4 | 14.4 | 203 | 4625 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 51.1 | 16.5 | 225 | 5250 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.5 | 15.0 | 219 | 4850 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 55.9 | 17.0 | 228 | 5600 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.2 | 15.5 | 215 | 4975 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.1 | 15.0 | 228 | 5500 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.3 | 13.8 | 216 | 4725 | NA | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.8 | 16.1 | 215 | 5500 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 41.7 | 14.7 | 210 | 4700 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 53.4 | 15.8 | 219 | 5500 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.3 | 14.0 | 208 | 4575 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.1 | 15.1 | 209 | 5500 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.5 | 15.2 | 216 | 5000 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.8 | 15.9 | 229 | 5950 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 43.5 | 15.2 | 213 | 4650 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 51.5 | 16.3 | 230 | 5500 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.2 | 14.1 | 217 | 4375 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 55.1 | 16.0 | 230 | 5850 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 44.5 | 15.7 | 217 | 4875 | NA | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 48.8 | 16.2 | 222 | 6000 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 47.2 | 13.7 | 214 | 4925 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | NA | NA | NA | NA | NA | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 46.8 | 14.3 | 215 | 4850 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 50.4 | 15.7 | 222 | 5750 | male | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 45.2 | 14.8 | 212 | 5200 | female | 2009 | Gentoo_Biscoe |
Gentoo | Biscoe | 49.9 | 16.1 | 213 | 5400 | male | 2009 | Gentoo_Biscoe |
Chinstrap | Dream | 46.5 | 17.9 | 192 | 3500 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 50.0 | 19.5 | 196 | 3900 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 51.3 | 19.2 | 193 | 3650 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 45.4 | 18.7 | 188 | 3525 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 52.7 | 19.8 | 197 | 3725 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 45.2 | 17.8 | 198 | 3950 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 46.1 | 18.2 | 178 | 3250 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 51.3 | 18.2 | 197 | 3750 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 46.0 | 18.9 | 195 | 4150 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 51.3 | 19.9 | 198 | 3700 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 46.6 | 17.8 | 193 | 3800 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 51.7 | 20.3 | 194 | 3775 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 47.0 | 17.3 | 185 | 3700 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 52.0 | 18.1 | 201 | 4050 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 45.9 | 17.1 | 190 | 3575 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 50.5 | 19.6 | 201 | 4050 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 50.3 | 20.0 | 197 | 3300 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 58.0 | 17.8 | 181 | 3700 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 46.4 | 18.6 | 190 | 3450 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 49.2 | 18.2 | 195 | 4400 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 42.4 | 17.3 | 181 | 3600 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 48.5 | 17.5 | 191 | 3400 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 43.2 | 16.6 | 187 | 2900 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 50.6 | 19.4 | 193 | 3800 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 46.7 | 17.9 | 195 | 3300 | female | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 52.0 | 19.0 | 197 | 4150 | male | 2007 | Chinstrap_Dream |
Chinstrap | Dream | 50.5 | 18.4 | 200 | 3400 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 49.5 | 19.0 | 200 | 3800 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 46.4 | 17.8 | 191 | 3700 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 52.8 | 20.0 | 205 | 4550 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 40.9 | 16.6 | 187 | 3200 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 54.2 | 20.8 | 201 | 4300 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 42.5 | 16.7 | 187 | 3350 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 51.0 | 18.8 | 203 | 4100 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 49.7 | 18.6 | 195 | 3600 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 47.5 | 16.8 | 199 | 3900 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 47.6 | 18.3 | 195 | 3850 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 52.0 | 20.7 | 210 | 4800 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 46.9 | 16.6 | 192 | 2700 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 53.5 | 19.9 | 205 | 4500 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 49.0 | 19.5 | 210 | 3950 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 46.2 | 17.5 | 187 | 3650 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 50.9 | 19.1 | 196 | 3550 | male | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 45.5 | 17.0 | 196 | 3500 | female | 2008 | Chinstrap_Dream |
Chinstrap | Dream | 50.9 | 17.9 | 196 | 3675 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.8 | 18.5 | 201 | 4450 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.1 | 17.9 | 190 | 3400 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 49.0 | 19.6 | 212 | 4300 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 51.5 | 18.7 | 187 | 3250 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 49.8 | 17.3 | 198 | 3675 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 48.1 | 16.4 | 199 | 3325 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 51.4 | 19.0 | 201 | 3950 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 45.7 | 17.3 | 193 | 3600 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.7 | 19.7 | 203 | 4050 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 42.5 | 17.3 | 187 | 3350 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 52.2 | 18.8 | 197 | 3450 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 45.2 | 16.6 | 191 | 3250 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 49.3 | 19.9 | 203 | 4050 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.2 | 18.8 | 202 | 3800 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 45.6 | 19.4 | 194 | 3525 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 51.9 | 19.5 | 206 | 3950 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 46.8 | 16.5 | 189 | 3650 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 45.7 | 17.0 | 195 | 3650 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 55.8 | 19.8 | 207 | 4000 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 43.5 | 18.1 | 202 | 3400 | female | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 49.6 | 18.2 | 193 | 3775 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.8 | 19.0 | 210 | 4100 | male | 2009 | Chinstrap_Dream |
Chinstrap | Dream | 50.2 | 18.7 | 198 | 3775 | female | 2009 | Chinstrap_Dream |
penguins %>% # pipe penguin data
group_by(species, island) %>%
mutate('species-island' = paste(as.character(species), as.character(island), sep = "\n")) %>% # create a new dataframe with 'species' island column using mutate() and paste(sep = "\n")
summarise(flipper_length_mm, 'species-island') %>%
boxplot(flipper_length_mm ~ species-island, data = .) # make a boxplot
## `summarise()` regrouping output by 'species', 'island' (override with `.groups` argument)
The “” function separates pasted character with a new line.
penguins %>% # pipe penguin data
mutate(`species-island` = paste("species", "island", sep = "\n")) %>% # add a new species-island column using mutate() and paste(sep = "\n")
summarise(avg_flipper_length_mm = mean(flipper_length_mm, na.rm = TRUE), avg_body_mass_g = mean(body_mass_g, na.rm = TRUE)) %>% # create a data frame that summarizes rouped elements
plot(avg_flipper_length_mm ~ avg_body_mass_g, data = .) # plot average flipper length against average body mass
From the plot, it looks like there is a correlation between average flipper length and average body mass. That is, there is a linear relationship between average flipper length and average body mass.
penguins %>% # pipe penguin data
group_by(flipper_length_mm, body_mass_g) %>%
summarize(avg_flipper_length_mm = mean(flipper_length_mm, na.rm = TRUE), avg_body_mass_g = mean(body_mass_g, na.rm = TRUE)) %>% # create a new column of average flipper length and average body mass in the penguins data set using mutate()
plot(avg_flipper_length_mm ~ avg_body_mass_g, data = .) # plot average flipper length against average body mass using the whole dataset
## `summarise()` regrouping output by 'flipper_length_mm' (override with `.groups` argument)
My thoughts about this plot;
The average body mass across the dataset falls between 4000g to 4500g.
The average flipper length is about 200mm
Values above the ranges mentioned above are probably outliers
This plot correlates with the previous plot of average flipper length against body mass across species and island.
bill_gent_bis <- penguins %>%
group_by(species, island) %>% # create a new dataframe with values for bill length for Gentoo species in Biscoe island
filter(species == "Gentoo" | island == "Biscoe") %>% # Filter Gentoo species and Biscoe island
pull(bill_length_mm) # Use pull() to select bill length
bill_gent_bis
## [1] 37.8 37.7 35.9 38.2 38.8 35.3 40.6 40.5 37.9 40.5 39.6 40.1 35.0 42.0 34.5
## [16] 41.4 39.0 40.6 36.5 37.6 35.7 41.3 37.6 41.1 36.4 41.6 35.5 41.1 35.0 41.0
## [31] 37.7 37.8 37.9 39.7 38.6 38.2 38.1 43.2 38.1 45.6 39.7 42.2 39.6 42.7 46.1
## [46] 50.0 48.7 50.0 47.6 46.5 45.4 46.7 43.3 46.8 40.9 49.0 45.5 48.4 45.8 49.3
## [61] 42.0 49.2 46.2 48.7 50.2 45.1 46.5 46.3 42.9 46.1 44.5 47.8 48.2 50.0 47.3
## [76] 42.8 45.1 59.6 49.1 48.4 42.6 44.4 44.0 48.7 42.7 49.6 45.3 49.6 50.5 43.6
## [91] 45.5 50.5 44.9 45.2 46.6 48.5 45.1 50.1 46.5 45.0 43.8 45.5 43.2 50.4 45.3
## [106] 46.2 45.7 54.3 45.8 49.8 46.2 49.5 43.5 50.7 47.7 46.4 48.2 46.5 46.4 48.6
## [121] 47.5 51.1 45.2 45.2 49.1 52.5 47.4 50.0 44.9 50.8 43.4 51.3 47.5 52.1 47.5
## [136] 52.2 45.5 49.5 44.5 50.8 49.4 46.9 48.4 51.1 48.5 55.9 47.2 49.1 47.3 46.8
## [151] 41.7 53.4 43.3 48.1 50.5 49.8 43.5 51.5 46.2 55.1 44.5 48.8 47.2 NA 46.8
## [166] 50.4 45.2 49.9
as.data.frame(bill_gent_bis) %>% # covert bill_gent_bis containing bill length of Gentoo species in Biscoe island
summarise(sd = sd(bill_gent_bis, na.rm = TRUE), n = n(), se = replicate(n =10, sd/sqrt(n))) %>% # calculate the standard deviations, replicate standard error 10x and summarize
na.omit() %>% # omit missing values
kbl() %>%
kable_styling() # Using KableExtra table formatting
sd | n | se |
---|---|---|
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
4.772731 | 168 | 0.3682242 |
library(purrr)
my_vec <- 1:100 # create a vector containing number 1 through 100
my_vec_data <- map_df(5:100, ~data.frame(m = mean(my_vec[1:.x]),
sd = sd(my_vec[1:.x])),
.id = "sample_size") # use map_df to create a data frame from the created vector.
my_vec_data # view new data frame
## sample_size m sd
## 1 1 3.0 1.581139
## 2 2 3.5 1.870829
## 3 3 4.0 2.160247
## 4 4 4.5 2.449490
## 5 5 5.0 2.738613
## 6 6 5.5 3.027650
## 7 7 6.0 3.316625
## 8 8 6.5 3.605551
## 9 9 7.0 3.894440
## 10 10 7.5 4.183300
## 11 11 8.0 4.472136
## 12 12 8.5 4.760952
## 13 13 9.0 5.049752
## 14 14 9.5 5.338539
## 15 15 10.0 5.627314
## 16 16 10.5 5.916080
## 17 17 11.0 6.204837
## 18 18 11.5 6.493587
## 19 19 12.0 6.782330
## 20 20 12.5 7.071068
## 21 21 13.0 7.359801
## 22 22 13.5 7.648529
## 23 23 14.0 7.937254
## 24 24 14.5 8.225975
## 25 25 15.0 8.514693
## 26 26 15.5 8.803408
## 27 27 16.0 9.092121
## 28 28 16.5 9.380832
## 29 29 17.0 9.669540
## 30 30 17.5 9.958246
## 31 31 18.0 10.246951
## 32 32 18.5 10.535654
## 33 33 19.0 10.824355
## 34 34 19.5 11.113055
## 35 35 20.0 11.401754
## 36 36 20.5 11.690452
## 37 37 21.0 11.979149
## 38 38 21.5 12.267844
## 39 39 22.0 12.556539
## 40 40 22.5 12.845233
## 41 41 23.0 13.133926
## 42 42 23.5 13.422618
## 43 43 24.0 13.711309
## 44 44 24.5 14.000000
## 45 45 25.0 14.288690
## 46 46 25.5 14.577380
## 47 47 26.0 14.866069
## 48 48 26.5 15.154757
## 49 49 27.0 15.443445
## 50 50 27.5 15.732133
## 51 51 28.0 16.020820
## 52 52 28.5 16.309506
## 53 53 29.0 16.598193
## 54 54 29.5 16.886879
## 55 55 30.0 17.175564
## 56 56 30.5 17.464249
## 57 57 31.0 17.752934
## 58 58 31.5 18.041619
## 59 59 32.0 18.330303
## 60 60 32.5 18.618987
## 61 61 33.0 18.907670
## 62 62 33.5 19.196354
## 63 63 34.0 19.485037
## 64 64 34.5 19.773720
## 65 65 35.0 20.062403
## 66 66 35.5 20.351085
## 67 67 36.0 20.639767
## 68 68 36.5 20.928450
## 69 69 37.0 21.217131
## 70 70 37.5 21.505813
## 71 71 38.0 21.794495
## 72 72 38.5 22.083176
## 73 73 39.0 22.371857
## 74 74 39.5 22.660538
## 75 75 40.0 22.949219
## 76 76 40.5 23.237900
## 77 77 41.0 23.526581
## 78 78 41.5 23.815261
## 79 79 42.0 24.103942
## 80 80 42.5 24.392622
## 81 81 43.0 24.681302
## 82 82 43.5 24.969982
## 83 83 44.0 25.258662
## 84 84 44.5 25.547342
## 85 85 45.0 25.836021
## 86 86 45.5 26.124701
## 87 87 46.0 26.413380
## 88 88 46.5 26.702060
## 89 89 47.0 26.990739
## 90 90 47.5 27.279418
## 91 91 48.0 27.568098
## 92 92 48.5 27.856777
## 93 93 49.0 28.145456
## 94 94 49.5 28.434134
## 95 95 50.0 28.722813
## 96 96 50.5 29.011492
my_vec_data_02 <- my_vec_data %>% # pipe data frame containing mean and SD of samples
group_by(sample_size, sd) %>% # group sample size and SD
summarise(sample_size, sd, n = n(), se = sd/sqrt(n)) # calculate standard error and summarize sample_size, standard deviation and Standard error into one data frame
## `summarise()` regrouping output by 'sample_size' (override with `.groups` argument)
my_vec_data_02 # summarized data showing se column
## # A tibble: 96 x 4
## # Groups: sample_size [96]
## sample_size sd n se
## <chr> <dbl> <int> <dbl>
## 1 1 1.58 1 1.58
## 2 10 4.18 1 4.18
## 3 11 4.47 1 4.47
## 4 12 4.76 1 4.76
## 5 13 5.05 1 5.05
## 6 14 5.34 1 5.34
## 7 15 5.63 1 5.63
## 8 16 5.92 1 5.92
## 9 17 6.20 1 6.20
## 10 18 6.49 1 6.49
## # ... with 86 more rows
plot(sd ~ se, data = my_vec_data_02) # plot standard deviation against standard error
There’s no difference between the SD and SE. That is; SD = SE
I plotted the standard Errors using plot() and hist() side by side
par(mfrow = c(2, 2)) # setting the two panel plot
plot(my_vec_data_02$se) # plot se from my_vec_data_02
hist(my_vec_data_02$se) # make a histogram to show the distrubution of se from my_vec data
par(mfrow = c(1, 1)) # undo two-panel plot